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Based on the assumptions of the kinetic theory of gases, a three-dimensional probabilistic model of molecular
and transitional flow in vacuum components was developed. The computational model takes as data
combinations of pressures, temperature of the gas and of the container, type of gas, and geometry and type
of materials used in the vacuum components. The results of the calculations are gasflow, dependent pressures
and molecular density distribution. In order to treat complicated three-dimensional shapes effectively, an
adaptive cell generation method was designed. The model was tested for several geometries with static and

moving walls and different flow conditions, and was found to agree well with published results.

1. Introduction

The gas flow through a vacuum component can be continuous,
transitional or molecular depending on the pressure range and
geometries involved. A review of existing calculation methods in
gas dynamics shows that attempts have been made to produce a
numerical scheme able to treat the whole range from continuous
to molecular flow!. But the available models are, for the time
being, only applicable to inviscid, incompressible flows at the
continuous end of the spectrum. This approach is not valid for
the modelling of vacuum components and it is still necessary to
solve the different flow regimes separately, with different
methods. For continuous flow, a numerical solution of the full
Navier—Stokes equations has to be considered. A recommended
approach would be to use the implicit Beam-Warming scheme
with an explicit treatment of the viscous term. For molecular and
transitional flows, numerical methods for solving Boltzman’s
equation have been extensively studied®. For molecular flow,
results have also been obtained through Monte Carlo simulations
based directly on the molecular description provided by kinetic
theory®*. Several authors have worked on the extension of the
simulations to transitional flow where intermolecular interactions
have to be considered**”, but due to their unmanageable com-
puting requirements they have been found feasible only for simple
one-dimensional or axisymmetric problems. Even so, some
results have been obtained only by using a parallel computer’.
The present work proposes a method for simulating molecular
and transitional flows using a probabilistic model in three dimen-
sions. The result of the simulation is a molecular distribution
function throughout the region. Once this function is obtained it
is used to calculate variables such as density, pressure etc. The
model was tested by calculating transmission probabilities, mass

flow in tubes, and throughput for a simplified Gaede pump. The
results of these numerical experiments were compared with values
given in the literature and found to agree to within 5%. The
present version of the software, written in FORTRAN, can be
run on a 486DX microcomputer.

2. Modelling of molecular and transitional flow

A complete description of a fluid from a molecular viewpoint can
be given by the molecular distribution function f{r, v, 7), which is
a function of the position vector r, the velocity vector v and time
t. The quantity f(r,v, 7) dr dv is the mean number of molecules
whose centre of mass at time 7 is located between r and r+dr and
has a velocity between v and v+dv. From the function f{r,v, 7),
macroscopic quantities that describe a flow such as density, pres-
sure, temperature and stream velocity can be deduced by averages
of molecular values in a space element. The distribution function
can be obtained through probabilistic simulations. In this work,
a statistically representative set of particle histories is generated
to obtain a good approximation to the distribution function.
Intermolecular and molecule-wall collisions are considered in
these histories.

Particles are assumed to enter the vacuum components from
large containers in which the gas is Maxwellian. The inward
number flux of molecules is proportional to the gas density and
the average thermal speed of the molecules. The probability that
a molecule enters an elementary area of an opening is pro-
portional to this area and the probability that a molecule enters
in an elementary solid angle is proportional to the cosine of the
angle with respect to the normal to the surface (cosine law).

For the intermolecular collisions the following assumptions
are made:
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(i) Molecular chaos: possible correlations between pre-
collision velocities of molecules can be neglected.

(ii) Only two-particle collisions are taken into account.

(iii) Molecules are perfectly elastic.

(iv) The hard sphere model is considered : intermolecular for-
ces become effective at molecular diameter distance only
and the deflection angle depends only on the eccentricity
of the impact.

There remains only to analyse the molecular interactions with
the walls. The wall collision dynamics are based on an assumption
of Lorentz that the solid walls are ‘molecularly rough’ and there-
fore perfect diffusers®’. The molecules striking the wall become
adsorbed there for a time (residence time) and on leaving the
wall have forgotten the incident direction and velocities. The
behaviour of diffusely reflected molecules is identical to that of
molecules from a fictitious equilibrium gas on the reverse side of
the surface, therefore the cosine law again applies.

3. Numerical modelling

The computational model was designed for simulations of time
dependent flows in a given physical space with static and moving
boundaries. Simultaneous particle histories are generated. For
each particle (a kind of macromolecule in lieu of a large number
of real molecules), position vectors at the entrance wall, uni-
formly distributed over the surface, and velocity vectors with a
direction distribution that is proportional to the cosine of the
angle with the normal, are generated. If the entry plane is normal
to the z axis, the initial direction of emission at point (x,y,0)
with a cosine law probability is defined by the direction cosines
(o, B,7), where o = p cos(¢), f = p sin(¢), and y = ¢. Here p, ¢
and ¢ are obtained from two numbers, r, and r,, chosen from a
uniform distribution in (0, 1) as follows: p = \/E, q=/1-r,
and ¢ = 2nr,.

The position and velocity vectors are updated in time, taking
into consideration wall-molecule and molecule-molecule colli-
sions. From these information vectors, an approximation to the
molecular distribution function and the desired macroscopic vari-
ables are calculated.

A discretisation of time and space has to be defined. The time
intervals d¢ are chosen small enough to be able to consider,
separately, pure molecular motions without intermolecular inter-
actions, followed by the appropriate molecular collisions. There-
fore dt has to be smaller than the mean collision time (depending
on the gas density). Action is taken if the molecules cross an exit
boundary or hit a wall. Then the collisions occurring during dt,
among particles that are close enough (belonging to the same
cell), are simulated.

Space is subdivided into a cell structure which follows the
boundaries as closely as possible. First, the whole domain is
covered by a set of points, each point associated with a norm,
and acting as the identifier of an element of volume or cell. A
molecule belongs to a cell if its position is close enough to the
reference point in a given norm. The shapes of the cells can vary
with the norm from simple cubic with

Ix].. = max]x,|

to more complicated curved forms when using modified Eucli-
dean norms. The cell shape and size can therefore be adapted to
more complicated geometries and regions of larger gradients.
The boundaries could also be covered by points, and a wall hit
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would be identified as such if the molecule entered the one-
sided small cell associated with a boundary point. The direction
distribution of the velocity vector of the reflected particle is
obtained by a rotation. The rotation matrix is formed using the
angle between the normal to the surface at the boundary point
and the z axis. The schematic flow chart is shown in Figure 1.

4. Results and discussion

To test the molecular flow ‘aspect’ of the program, the trans-
mission probabilities of tubes of various shapes were calculated
and the results compared with values taken from formulae found
in the literature®®. When calculating the transmission probability
the following assumptions must be made: stationary flow con-
ditions, constant flow current density at the entry plane, and
molecular flow.

For long tubes of length / and rectangular cross-section
A = b x a, the equation for the transmission probability Pr given
by Wutz et al® is

LA
3 14y Dr(y)

where 7 = b/a < 1, and ®g(p) is a correction factor taken from a
graph. This equation was evaluated for 4 = 1 cm* and 4 = 0.1
cm?, and values of //b between 1 and 100 with /= 100 cm. Pr
values from equation (1) and the corresponding calculated trans-
mission probabilities P, are shown in Figure 2. The agreement is
within 5%, even for long and narrow tubes (//b = 100).

Pr (1)

START

initial instructions:
input
space discretisation

definition of the
initial state of the gas

iterations in time:
(in time steps dt)

generation of inward
flux molecules

movement of particles:
action is taken if molecules
hit walls or exit

intermolecular
collisions

output variables calculation

STOP

Figure 1. Flow chart of computational model.
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Figure 2. Transmission probability in tubes of length / and width b, with
rectangular cross-sections 4 = 0.1 cm?, and 4 = 1 cm’, as a function of
the I/b ratio. The circles joined by solid lines represent the data reported
by Wutzer alf, and the squares and triangles the results of the calculations.

Figure 3 shows the transmission probability Pr reported by
Clausing® for a tube of circular cross-section of radius r and
length /, and the calculated transmission probability Pr. The
agreement is better than 5% through the three decades of the //r
ratios.

The transitional and molecular aspects of the model were tested
for the case of a tube of rectangular cross-section in which pres-
sure and flow measurements were taken in molecular and tran-
sitional flow'. The dimensions of the tube were 0.324 cm wide,
22.86 cm high and 60.96 cm long. The two lower values of the
mean free path (4.61 and 1.32 cm) are indicative of transitional
flow in this geometry in which there is some molecular inter-
action. Figure 4 shows the measured flow rate Q and the cal-
culated flow rate Q, as a function of the mean free path calculated
from the average pressure.

A simplified element of a Gaede type pump was modelled in
order to test the program for moving boundaries. The com-
pression ratio of the Gaede pump reported by Biank and Pet-
zold'" from the Mongodin and Prevot theory was taken for
comparison. Consider parallel plates of side a = 3.6934 cm and
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Figure 3. Transmission probability in tubes with circular cross-sections,
radius r and length /, as a function of the //r ratio. The circles joined by
solid lines are the data reported by Clausing’, and the diamonds are the
results of the calculations.
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Figure 4. Flow rate as a function of the mean free path for a tube of
rectangular cross-section. The circles joined by solid lines are the results
of experiments by Dong and Bromley'’. The triangles represent the cal-
culated flow rates.

length L = 37.989 cm separated a distance # = 1.0553 cm, and
one of the plates moving at speed = 8300 cm s~ '. The pumping
speed S, is expressed as
_ahu_ & —Py/Py

2x10°

)

K
e*—1
where Py is the inlet pressure, Py the exhaust pressure, Py/Py, the
compression ratio and

_uL M
= \ 2nRT’

For a compression ratio of 18.89 the pumping speed calculated
by equation (2) is S, = 11.5 / s™'; the value obtained with the
numerical model was 12.6 / s~'. This result demonstrates the
potential use of the model in predicting the performance of molec-
ular pumps.

5. Conclusions

We developed a three-dimensional numerical model to calculate
flow in vacuum components based on a space discretisation sch-
eme that can adapt to complex physical shapes with stationary
or moving boundaries. The model was tested, and the results
were compared with published data in molecular and transitional
flows. It is not restricted to any particular geometry, and can be
easily extended to treat any arbitrary shape automatically.
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